Answer all questions in the booklet(s) provided. A point group flow chart, periodic table and other information are attached. Please write your name on each booklet used. You have $\underline{\mathbf{3}}$ hours.
[15] Question 1
a) Determine the possible microstates for $2 \mathrm{p}^{3}$ electronic configuration and arrange them in a microstate table (M_{L} vs. M_{S}). (10 marks)
b) Determine the terms for the $2 \mathrm{p}^{3}$ configuration. (3 marks)
c) List the terms from lowest (ground state) to highest energy. (2 marks)

[12] Question 2

Determine the symmetry elements and point group for (4 marks each):
a) CS_{2}
b) cis-[$\left.\mathrm{FeCl}_{4} \mathrm{Br}_{2}\right]^{3-}$
c) $\Lambda-\left[\operatorname{Co}(\mathrm{en})_{3}\right]^{2+} \quad(\mathrm{en}=$ ethylenediamine $)$

[10] Question 3

a) Use VSEPR theory to draw and then predict the actually geometry of a) $\mathrm{SbF}_{4}{ }^{-}$and b) $\mathrm{SeF}_{3}{ }^{+}$ (3 marks each)
b) Explain the trend in the following set of bond angles: $\mathrm{NCl}_{3}\left(\angle \mathrm{Cl}-\mathrm{N}-\mathrm{Cl}=107.1^{\circ}\right)$, $\mathrm{NF}_{3}\left(\angle \mathrm{~F}-\mathrm{N}-\mathrm{F}=102.3^{\circ}\right), \mathrm{PCl}_{3}\left(\angle \mathrm{Cl}-\mathrm{P}-\mathrm{Cl}=100.3^{\circ}\right)$, and $\mathrm{PF}_{3}\left(\angle \mathrm{~F}-\mathrm{P}-\mathrm{F}=97.7^{\circ}\right)$. $(4$ marks $)$

[8] Question 4

Glycine has the structure $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{C}(=\mathrm{O}) \mathrm{OH}$. It can lose a proton from the carboxyl group and form chelate rings bonded through the N and the deprotonated O atom. Draw out all the possible isomers of tris(glycinato)cobalt(III).

[14] Question 5

(Use of the attached Tanabe-Sugano diagrams may help in answering the following).
a) Why is $\left[\mathrm{MnBr}_{6}\right]^{4-}$ essentially colourless?
b) List all the spin-allowed transitions (originating from the ground-state) for $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$.
c) Why is the nephelauxetic parameter, β, significantly smaller for $\left[\mathrm{CoBr}_{6}\right]^{3-}$ than for $\left[\mathrm{CoF}_{6}\right]^{3-}$?
d) What is the ground-state term symbol for: i) As ii) Os^{2+} iii) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$

[13] Question 6

The splitting diagram for a trigonal bipyramidal (tbp) crystal field is given below. (The z -axis is coincident with the C_{3} axis of the trigonal bipyramid).

$$
\ldots \quad 0.707 \Delta
$$

$E \uparrow$	$-\ldots-\ldots-----\quad$	Barycenter -0.082Δ
-	-0.272Δ	

a) Redraw the splitting diagram above in your booklets and label the energy levels with the appropriate d orbitals. (5 marks)
b) Calculate the LFSE for a d^{3} (low-spin) and a d^{7} (high-spin) ion using the above diagram. (4 marks)
c) For which high-spin and which low-spin d configurations is a Jahn-Teller distortion theoretically possible for a trigonal bipyramidal structure. Use the above splitting diagram to determine this. (4 marks)

[8] Question 7

a) Label the following transitions as either: spin-forbidden, Laporte forbidden, Laporte allowed, ligand-to-metal charge transfer (LMCT) or metal-to-ligand charge transfer (MLCT). Choose the most appropriate label. There is only one label for each transition! (Copy into your exam book).
i) $\operatorname{CO}\left(\pi^{*}\right) \longleftarrow \operatorname{Co}\left(3 \mathrm{dt}_{2 \mathrm{~g}}\right)$ \qquad
ii) ${ }^{3} \mathrm{E}_{\mathrm{u}} \longleftarrow{ }^{3} \mathrm{~T}_{2 \mathrm{~g}}$
iii) ${ }^{4} \mathrm{~T}_{1 \mathrm{~g}} \longleftarrow{ }^{2} \mathrm{~T}_{2 \mathrm{~g}}$
iv) ${ }^{4} \mathrm{~T}_{1 \mathrm{~g}} \longleftarrow{ }^{4} \mathrm{~T}_{2 \mathrm{~g}}$
v) $\mathrm{Au}\left(5 \mathrm{~d} \mathrm{e}_{\mathrm{g}}{ }^{*}\right) \longleftarrow \mathrm{S}^{2-}(\pi)$
b) Rank the above transitions in order from weakest to strongest in intensity. (3 marks)

[9] Question 8

a) The ligand field splitting energies, $\Delta\left(\mathrm{cm}^{-1}\right)$, are listed below for a series of cobalt compounds and a series of chromium compounds. Explain the two trends thoroughly. (7 marks)

i) Complex	$\boldsymbol{\Delta}\left(\mathbf{c m}^{\mathbf{- 1}}\right)$	ii) Complex	$\boldsymbol{\Delta}\left(\mathbf{c m}^{\mathbf{- 1}}\right)$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$	22,900	$\left[\mathrm{CrF}_{6}\right]^{3-}$	15,000
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$	10,200	$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	17,400
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$	5,900	$\left.[\mathrm{CrF}]_{6}\right]^{-2}$	22,000
		$\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$	26,600

b) Briefly explain why far more tetrahedral complexes have high-spin configurations than octahedral complexes. (2 marks)

[11] Question 9

a) Derive the splitting pattern (you do not need to fully draw it) and determine the total number of lines in the EPR spectrum of $\mathrm{Cs}_{4}\left[\mathrm{LaF}_{6}\right]$. (unpaired electron on La) (4 marks)
(NOTE: for $\mathrm{La}, I=7 / 2$; for $\mathrm{F}, I=1 / 2$; and for $\mathrm{Cs}, I=7 / 2$)
b) The experimental magnetic moments of four manganese complexes are given below. Write down the electronic configurations (in terms of $\mathrm{t}_{2 \mathrm{~g}}$ and e_{g} orbitals in an octahedral field) that is consistent with the data and state whether the complexes are high spin or low spin. (4 marks)

Complex	$\underline{\mu}_{\text {exp }}$ (B.M.)
$\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$	1.8
$\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}$	3.2
$\left[\mathrm{Mn}(\mathrm{NCS})_{6}\right]^{4-}$	6.1
$\left[\mathrm{Mn}(\mathrm{acac})_{3}\right]$	5.0

c) Suggest an electronic structure (configuration and geometry) for the complex $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{FeNO}\right]^{2+}$ that is consistent with a $\mu_{\text {eff }}=3.9 \mathrm{BM}$. (3 marks)

